On the b-dominating coloring of graphs

نویسندگان

  • Chính T. Hoàng
  • Mekkia Kouider
چکیده

The b-chromatic number (G) of a graphG is defined as the largest number k for which the vertices of G can be colored with k colors satisfying the following property: for each i, 1 i k, there exists a vertex xi of color i such that for all j = i, 1 j k there exists a vertex yj of color j adjacent to xi . A graph G is b-perfect if each induced subgraph H of G has (H) = (H), where (H) is the chromatic number of H. We characterize all b-perfect bipartite graphs and all b-perfect P4-sparse graphs byminimal forbidden induced subgraphs.We also prove that every 2K2-free andP5-free graph is b-perfect. © 2005 Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Maximum Number of Dominating Classes in Graph Coloring

In this paper we investigate the dominating- -color number،  of a graph G. That is the maximum number of color classes that are also dominating when G is colored using colors. We show that where is the join of G and H. This result allows us to construct classes of graphs such that and thus provide some information regarding two questions raised in [1] and [2].  

متن کامل

Incidence dominating numbers of graphs

In this paper, the concept of incidence domination number of graphs  is introduced and the incidence dominating set and  the incidence domination number  of some particular graphs such as  paths, cycles, wheels, complete graphs and stars are studied.

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

On quas-monotonous graphs

A dominating coloring by k colors is a proper k coloring where every color i has a representative vertex xi adjacent to at least one vertex in each of the other classes. The b-chromatic number, b(G), of a graph G is the largest integer k such that G admits a dominating coloring by k colors. A graph G = (V,E) is said b-monotonous if b(H1) ≥ b(H2) for every induced subgraph H1 of G and every subg...

متن کامل

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

Dominating -color Number of Generalized Petersen Graphs

Dominating -color number of a graph is defined as the maximum number of color classes which are dominating sets of and is denoted by d, where the maximum is taken over all -coloring of . In this paper, we discussed the dominating -color number of Generalized Petersen Graphs. We have also discussed the condition under which chromatic number equals dominating -color number of Generalized Pet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2005